# A SHORT PROOF OF THE TRIANGLE INEQUALITY FOR THE PRETENTIOUS METRIC

### STEVE FAN

ABSTRACT. Let  $\mathbb{U}(\mathbb{N})$  be the set of all complex-valued multiplicative functions f with  $|f(n)| \leq 1$  for all  $n \in \mathbb{N}$ . The pretentious "metric" on  $\mathbb{U}(\mathbb{N})$  over an interval  $I \subseteq [1, \infty)$  is defined by

$$\mathbb{D}(f,g;I) := \left(\sum_{p \in I} \frac{1 - \Re(f(p)\overline{g(p)})}{p}\right)^{1/2}.$$

The author gives a short proof of the following triangle inequality:

$$\mathbb{D}(f, q; I) + \mathbb{D}(q, h; I) > \mathbb{D}(f, h; I)$$

for any  $f, g, h \in \mathbb{U}(\mathbb{N})$ .

## 1. Introduction

Let  $\mathbb{U}(\mathbb{N})$  be the set of all complex-valued multiplicative functions f with  $|f(n)| \leq 1$  for all  $n \in \mathbb{N}$ . The pretentious "metric" or "distance" on  $\mathbb{U}(\mathbb{N})$  over an interval  $I \subseteq [1, \infty)$  is defined by

$$\mathbb{D}(f, g; I) := \left(\sum_{p \in I} \frac{1 - \Re(f(p)\overline{g(p)})}{p}\right)^{1/2}.$$

This quantity satisfies the following triangle inequality [1]:

$$\mathbb{D}(f, g; I) + \mathbb{D}(g, h; I) \ge \mathbb{D}(f, h; I)$$

for any  $f, g, h \in \mathbb{U}(\mathbb{N})$ . As noted in [1], this follows from the inequality

$$\sqrt{1 - \Re(z)} + \sqrt{1 - \Re(w)} \ge \sqrt{1 - \Re(zw)}$$
 (1.1)

for  $z, w \in \mathbb{C}$  with  $|z|, |w| \leq 1$ . We shall give a short proof of (1.1).

# 2. Proof of (1.1)

Squaring both sides of (1.1) we see that it is equivalent to

$$(1 - \Re(z))(1 - \Re(w)) + 2\sqrt{(1 - \Re(z))(1 - \Re(w))} \ge \Im(z)\Im(w),$$

where  $z, w \in \mathbb{C}$  with  $|z|, |w| \leq 1$ . Thus (1.1) follows from

$$(1 - \Re(z))(1 - \Re(w)) + 2\sqrt{(1 - \Re(z))(1 - \Re(w))} \ge |\Im(z)\Im(w)|, \tag{2.1}$$

where  $z, w \in \mathbb{C}$  with  $|z|, |w| \leq 1$ . This inequality is trivial if  $z \in \mathbb{R}$  or  $w \in \mathbb{R}$ . Let  $z = Ae^{i\theta}$  and  $w = Be^{i\varphi}$ , where  $A, B \in (0, 1]$  and  $\theta, \varphi \in (-\pi, \pi) \setminus \{0\}$ . Then we may rewrite (2.1) as

$$(A^{-1} - \cos \theta)(B^{-1} - \cos \varphi) + 2\sqrt{A^{-1}B^{-1}(A^{-1} - \cos \theta)(B^{-1} - \cos \varphi)} \ge |\sin \theta \sin \varphi|. \quad (2.2)$$

2 STEVE FAN

Clearly, the left side of (2.2) is a decreasing function of A and B. Hence it is sufficient to prove (2.2) under the additional assumption that A = B = 1. In other words, we need only to prove

$$(1 - \cos \theta)(1 - \cos \varphi) + 2\sqrt{(1 - \cos \theta)(1 - \cos \varphi)} \ge \sqrt{(1 - \cos^2 \theta)(1 - \cos^2 \varphi)}$$

whenever  $\theta, \varphi \in (-\pi, \pi) \setminus \{0\}$ . Canceling out the factor  $\sqrt{(1-\cos\theta)(1-\cos\varphi)}$  on both sides we see that the inequality above is equivalent to

$$\sqrt{(1-\cos\theta)(1-\cos\varphi)} + 2 \ge \sqrt{(1+\cos\theta)(1+\cos\varphi)}.$$

This inequality is trivial, since the right side never exceeds 2. This completes the proof.

### References

[1] A. Granville and K. Soundararajan, *Pretentious multiplicative functions and an inequality for the zeta-function*, Anatomy of Integers, 191197, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008.

DEPARTMENT OF MATHEMATICS, DARTMOUTH COLLEGE, HANOVER, NH 03755, USA *Email address*: steve.fan.gr@dartmouth.edu